Lecture 21

Chemical Engineering for Micro/Nano Fabrication

Final Exam

- When: Friday December 15th from 9:00 am 12 pm
- Where: ETC 2.114
- Bring Pencil, eraser....no calculator.
- Corrected Exams will be available for you in NHB 5.136 after the grades are posted.

Design Criteria for New BCP

- Incorporate Si in one block..... etch contrast
- High χ ... gives small structures
- Amenable to orientation and alignment
- No new unit processes required for mfg

Rheology is also a valuable tool for determination of χ

Durand, et. al Journal of Polymer Sci., 2014

Determine χ by Rheology

 $\chi N_{ODT} = 10.5$

 $\chi(T) = \frac{a}{T} + b$

Oriented high χ block copolymers

50 Angstrom lines

40 Angstrom lines

Small Structure for Bit Patterned Media

Image Transfer of 50 Å lines and Spaces

H

BCP etch (CO₂ RIE)

BCP mask + Neutral brush (8 nm) Chromium (4 nm) Spin-on carbon (15 nm)

Silicon wafer

Steve Sirard

ChE 384T / 323

Cr/SOC etch $(Cl_2/O_2 RIE)$

Now...Alignment Control - DSA

Can we align these high χ materials

Even Nature struggles with this Challenge

- This is the theoretical limit for 193nm immersion litho
- Top coat should be perfectly neutral
- Brush approaches neutral with increasing multiplication
- Guide line should strongly favor one block

A "Hybrid" process flow created to incorporate top coat and combine chemical and topographic anchoring for DSA

Blachut, G., et al. *Chem. Mater* (2016), **28(24)**, 8951-8961. ChE 384T / 323

Directed Assembly at HGST Electron Beam written Guide patterns

ACS Appl. Mater. Interfaces 2015, 7, 13476

Greg in Belgium!

Gregory Blachut

PMOST-PTMSS

Chem. Mater **28(24)**8951-8961 (2016)

Possible Interpretation of Imec Cross sections

Elemental maps

ChE 384T

Relaxed Optical Litho Proposal Design for n=4, $L_o = 20$

Top coat and XST should be perfectly neutral for all n

Requires selective reaction of the brush with substrate not sidewall !!

Now being tested at imec with Geert Vandenberghe & Dustin Janes ChE 384T / 323

5 nm DSA using Imprint Lithography

Second try

(Map contrasts are optimized to show element distributions, they are not directly proportional to actual abundances)b

STEM Cross sections of Latest 5nm Process

Etch developed 50 Å lines and spaces

Thank You!!